

Perth (Head Office) WA, Launceston TAS, Rotorua, NZ

www.syrinx.net.au ABN: 39 092 638 410

BURNIE WASTE MANAGEMENT CENTRE

WETLAND EPN 9421/2 ANNUAL ENVIRONMENTAL REVIEW NOVEMBER 2023 – OCTOBER 2024

Document Control

Report	14010RPT042					
Version	Date	Prepared by	Approved	Issue Details		
1	27.03.25	SW, LP	KM	Issued to Client		

Limitations of Report

Syrinx Environmental PL has prepared this report as a professional consultant. No other warranty, expressed or implied, is made as to the professional advice included in this report. This report has not been prepared for the use, perusal or otherwise, by parties other than the Client, the Owner and their nominated consulting advisors without the consent of the Owner. No further information can be added without the consent of the Owner, nor does the report contain sufficient information for purposes of other parties or for other uses. The information contained in this report has been prepared in good faith, and accuracy of data at date of issue has been compiled to the best of our knowledge. However, Syrinx Environmental PL is not responsible for changes in conditions that may affect or alter information contained in this report before, during or after the date of issue.

Syrinx Environmental PL accepts site conditions as an indeterminable factor, creating variations that can never be fully defined by investigation. Measurements and values obtained from sampling and testing are indicative within a limited time frame and unless otherwise specified, should not be accepted as actual realities of conditions on site beyond that time frame.

© 2025 Syrinx Environmental PL

Except as provided by the Copyright Act 1968, no part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means without the prior written permission of Syrinx Environmental PL. Enquiries should be directed to the Corporate Intellectual Property Officer.

TABLE OF CONTENT

EXE	CUTIVE SUMMARY	1
ANN	UAL WETLAND ENVIRONMENTAL REVIEW	2
1.0	INTRODUCTION	2
1.1	PROJECT BACKGROUND	2
1.2	EPN 9421/2 MONITORING AND REPORTING REQUIREMENTS	2
1.2.1	Relationship with Other EPN's and Compliance Documents	4
2.0	MONITORING SAMPLING PLAN (CONDITIONS G8 1.6, M2, M3, M4, M5, M6)	6
2.1	SITE DETAILS	6
2.2	REFERENCES TO GUIDELINES (CONDITIONS M3-1.1)	6
2.3	SAMPLING LOCATIONS AND FREQUENCY	6
2.4	ANALYTICAL LABORATORY DETAILS (CONDITION M3-1.2, M4-1.1)	6
2.5	QUALITY ASSURANCE (QA) / QUALITY CONTROL (QC)	7
2.6	RESPONSIBLE PERSONNEL (CONDITION M4-1.2)	7
3.0	ANNUAL MONITORING RESULTS	7
3.1	FLOWS (CONDITION M4-1.3)	7
3.1.1	Rainfall	7
3.1.2	System Flows (Condition G8 1.4, 1.6)	10
3.2	RECIRCULATION EVENTS (CONDITION M4-1.6)	13
3.2.1	Background to the requirement for recirculation	13
3.2.2	Recirculation events during the monitoring period	13
3.3	WATER QUALITY (CONDITIONS M2, M4-1.4, 1.5)	13
3.3.1	Water Quality Data – Continuous Monitoring	13
3.3.2	Issues and Maintenance Undertaken on the <i>in-situ</i> Probes (Condition M3-1.4)	16
3.3.3	Water Quality Data – Laboratory Results (Condition G8 1.6)	16
3.3.4	Groundwater Quality Results	18
3.3.5	Quality Control	18
3.4	RESULTS OF LANDFILL SETTLEMENT (CONDITION M4-1.7)	19
3.5	RESULTS OF PIEZOMETER MONITORING (CONDITION M4-1.7)	19
4.0	ENVIRONMENTAL PERFORMANCE	19
4.1	PUBLIC COMPLAINTS (EPN CONDITION G8 1.2)	19
4.2	PROCEDURAL OR PROCESS CHANGES (EPN CONDITION G8 1.3)	19
4.3	WASTE MINIMISATION INITIATIVE (EPN CONDITION G8 1.4)	21
4.3.1	Sludge removal, treatment, and reuse	21
4.4	SUMMARY OF COMMUNITY CONSULTATION / COMMUNICATION (CONDITION G8 1.10)	21
5.0	SUMMARY OF RESULTS AND COMPLIANCE (CONDITION G8 1.9)	21
REF	ERENCES	22
APP	ENDICES	23

LIST OF TABLES

Table 1	Summary of EPN 9421/2 (draft) Conditions that relate to the Annual Environmental Review	3
Table 2.	Personnel undertaking monitoring program for the reporting period	7
Table 3.	Rainfall measured at the BWMC Site FOR current and previous reporting period.	8
Table 4.	Volumes of leachate and treated leachate measured in the previous and current reporting periods.	11
Table 5.	Summary statistics for continuously monitored parameters at EFF1 for the reporting period.	14
Table 6.	Water quality trigger limits as set in the EPN 9421/2 for EFF2.	16
Table 7.	System compliance with the water quality trigger limits listed in EPN 9421/2.	17
Table 8.	Summary of data from QA/QC samples and an assessment against their primary sample	19
LIST OF	FIGURES	
Figure 1.	Schematic of the treatment system and compliance monitoring locations sampled to satisfy EPN 9421/2.	5
Figure 2.	Daily rainfall data recorded at the Burnie Waste Management Centre	9
Figure 3.	Daily volumes	12
Figure 4.	Hourly ammonia concentrations as measured by an in-situ water quality probe at EFF1	15
Figure 5.	Ammonia concentrations in the influent (INF), discharge from the surface wetlands (EFF1) and effluent discharge to the unnamed tributary to Cooee creek (EFF2).	17
Figure 6.	Leachate levels as measured by piezometers at several locations surrounding the landfill cap. 20	
LIST OF	APPENDICES	
APPENDIX	1. Table of EPN 9421/2 Monitoring Parameters and Frequencies	24
	2. Laboratory Analytical Data	28
	3. Tabulated Field And Lab Data	38

ABBREVIATIONS

The following terms are used in the document.

Abbreviation or acronym	What it stands for
AEST	Australian Eastern Standard Time
BCC	Burnie City Council
BoM	Bureau of Meteorology
BWMC	Burnie Waste Management Centre
EFF1	Monitoring Location – Effluent 1
EFF2	Monitoring Location – Effluent 2
EPN	Environmental Protection Notice
GW01	Monitoring Location – Groundwater 1
INF	Monitoring Location – Header Tank
IB	Infiltration Basin(s) - Wet Infiltration Forest
LOR	Limit of Reporting
MH01	Monitoring Location – Manhole 1
QA/QC	Quality Assurance/Quality Control
SB04	Monitoring Location – also EFF1
SYR	Syrinx Environmental

EXECUTIVE SUMMARY

The Burnie Waste Management Centre (BWMC) at 289 Mooreville Rd, Burnie, Tasmania operates a Leachate Treatment Wetland system for treatment and disposal of leachate generated from the closed Stage 1 landfill. The wetland operates under Environmental Protection Notice (EPN) 9421/2 (draft revision of EPN 9421/1) which governs the operation of the system and provides specific water quality trigger values to assess compliance. This report is the Annual Wetland Environmental Review required under Condition G8.

Annual water quality sampling was undertaken by Syrinx Environmental PL during the reporting period of November 2023 to October 2024 to determine the compliance of the system with the conditions of the EPN. During the reporting period, the mean concentration of the key water quality parameters (ammonia, chromium, copper, nickel, and zinc) did not exceed trigger concentrations set out within the EPN (see below). As such, the **system was deemed compliant** with the water quality conditions in the Environmental Protection Notice 9421/2 during the reporting period.

System compliance with the water quality trigger limits listed in EPN 9421/2

Water Quality Parameter	EPN Condition	Sampling Location	Mean Concentration **	EPN Trigger Limit	Unit	Compliance with EPN 9421/2
Ammonia	EF1 - 1	EFF2	0.16	1.61		
Ammonia	EF2 - 1	EFF1	1.90	>1.61		•
Chromium (total)			0.0005	0.0010	mg/L	✓
Copper (total)	EF2 - 3*	EFF2	0.0005	0.0014	IIIg/L	✓
Nickel (total)	EFZ - 3	EFF2	0.0030	0.0110		✓
Zinc (total)			0.0025	0.0080		✓

Legend

- ✓ Water quality parameter is below the respective trigger limit defined in EPN 9421/1
- Water quality parameter exceeds the respective trigger limit defined in EPN 9421/1

^{*} It has been assumed that the EPN trigger limits for metals were intended to be in μ g/L rather than mg/L as was printed in the EPN. The higher, less stringent values printed in the EPN have been converted accordingly by a factor of 1000 and have been used in the above table.

^{**} The arithmetic mean was used to calculate these values. Where a concentration was below the limit of detection, the concentration was taken at 50% of the limit of detection to enable the calculation.

ANNUAL WETLAND ENVIRONMENTAL REVIEW

1.0 INTRODUCTION

1.1 PROJECT BACKGROUND

Burnie City Council (BCC) owns and operates the Burnie Waste Management Centre (BWMC) at 289 Mooreville Road, Burnie Tasmania (hereafter, "the site"). Within the BWMC, a Leachate Treatment Wetland system (hereafter referred to as "the system") has been constructed to treat and dispose of leachate generated from the closed Stage 1 landfill area. The system was constructed in late 2016 with the commissioning period completed in June 2017; the operational phase commenced in July 2017.

An overall site map is provided in Figure 1 showing the various components and sampling locations within the system. A brief description of the wetland function is provided in Section 2.1 and is discussed in greater detail in previous Annual Environmental Reports.

Since July 2022 the site has operated under Environmental Protection Notice (EPN) 9421/2 (hereafter, "the EPN"), which is a draft revised edition of the original EPN 9421/1, issued on the 5th of February 2016 by the Tasmanian Environmental Protection Agency (EPA). The revised EPN included all of the same conditions as the original, except for a reduction in sampling frequencies to annual for all analytes not already monitored via telemetry. This reduction was granted based on the system's ongoing and consistent performance since commissioning.

1.2 EPN 9421/2 MONITORING AND REPORTING REQUIREMENTS

A summary of the EPN Conditions that relate to the Annual Environmental Review is presented in Table 1. This Annual Wetland Environmental Review covers the reporting period from November 2023 to October 2024 in fulfilment of Condition G of the EPN. Continuous (telemetric) monitoring of key parameters (ammonia, pH, conductivity, temp) and annual grab sampling are undertaken as required by the EPN and as discussed in detail in previous Annual Environmental Reports.

The compliance discharge point for the system is EFF2, which discharges to an unnamed tributary of Cooee Creek.

Table 1 Summary of EPN 9421/2 (draft) Conditions that relate to the Annual Environmental Review

G8	Annual Environmental Review
1	Unless otherwise specified in writing by the Director, a publicly available Annual Environmental Review for the activity must be submitted to the Director each year within three months of the end of the reporting period. Without limitation, each Annual Environmental Review must include the following information:
1.1	A statement by the General Manager, Chief Executive Officer or equivalent for the activity acknowledging the contents of the Annual Environmental Review;
1.2	Subject to the Personal Information Protection Act 2004, a list of all complaints received from the public during the reporting period concerning actual or potential environmental harm or environmental nuisance caused by the activity and a description of any actions taken as a result of those complaints;
1.3	Details of environment-related procedural or process changes that have been implemented during the reporting period;
1.4	A summary of the amounts (tonnes or litres) of both solid and liquid wastes produced and treatment methods implemented during the reporting period. Initiatives or programs planned to avoid, minimise, reuse, or recycle such wastes over the next reporting period should be detailed;
1.5	Details of all non-trivial environmental incidents and/or incidents of non compliance with these conditions that occurred during the reporting period, and any mitigative or preventative actions that have resulted from such incidents;
1.6	A summary of the monitoring data and record keeping required by these conditions. This information should be presented in graphical form where possible, including comparison with the results of at least the preceding reporting period. Special causes and system changes that have impacted on the parameters monitored must be noted. Explanation of significant deviations between actual results and any predictions made in previous reports must be provided;
1.7	Identification of breaches of limits specified in these conditions and significant variations from predicted results contained in any relevant DPEMP or EMP, an explanation of why each identified breach of specified limits or variation from predictions occurred and details of the actions taken in response to each identified breach of limits or variance from predictions;
1.8	A list of any issues, not discussed elsewhere in the report, that must be addressed to improve compliance with these conditions, and the actions that are proposed to address any such issues;
1.9	A summary of fulfilment of environmental commitments made for the reporting period. This summary must include indication of results of the actions implemented and explanation of any failures to achieve such commitments; and
1.10	A summary of any community consultation and communication undertaken during the reporting period.

1.2.1 Relationship with Other EPN's and Compliance Documents

The EPA has issued two Environmental Protection Notices and one Environmental Approval in relation to activities onsite at the BWMC:

- Environmental Protection Notice No. 9161/2, known as the 'Site EPN' which comprises quarterly monitoring (7 locations on site), and annual reporting.
- Environmental Approval M481808 ck (hereafter, "EA M481808 ck"), which relates to EPA approval to treat and apply manganese-contaminated sludge on site. On the 4th July 2019, the EPA approved BCC to continue the onsite storage, treatment, and reuse of manganese-contaminated sludge from the landfill leachate wetlands treatment system subject to the conditions of "EA M481808 ck".

This report is a requirement under 'draft EPN 9421/2' which specifically covers the Stage 1 Leachate Treatment Wetland system.

This report should also be read in conjunction with several other documents which include:

- Burnie Waste Management Centre Stage 1 Landfill Leachate Treatment Wetland Development Proposal & Environmental Management Plan (DPEMP);
- Relevant technical drawings;
- Environmental Protection Notice 9421/1;
- Environmental Protection Notice 9421/2 (draft version);
- BWMC Operation and Maintenance Manual (O & M Manual); and
- Previous annual report(s).

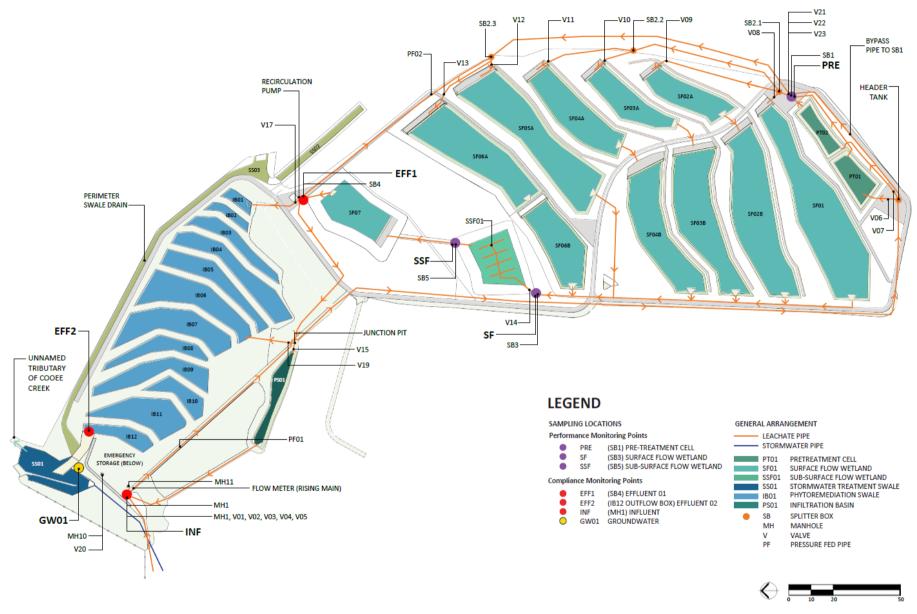


Figure 1: Schematic of the treatment system and compliance monitoring locations sampled to satisfy EPN 9421/2.

2.0 MONITORING SAMPLING PLAN (CONDITIONS G8 1.6, M2, M3, M4, M5, M6)

2.1 SITE DETAILS

A site map depicting system components and sampling locations within the system is shown in Figure 1. Stage 1 landfill leachate is collected within Manhole 1 (MH1) from where it is pumped to the Header Tank (the "INF" monitoring location). Leachate is treated throughout the system and eventually flows to the Wet Infiltration Forest (EFF1) before discharging into an unnamed tributary of Cooee Creek at EFF2 (licensed discharge point). The system's function is discussed in greater detail in previous annual reports (Syrinx, 2022a & Syrinx, 2022b).

2.2 REFERENCES TO GUIDELINES (CONDITIONS M3-1.1)

Sample collection was conducted by qualified Syrinx Environmental (Syrinx) staff in line with the methodology outlined in the Australian/New Zealand Standards for Water Quality Sampling (AS/NZS 5667.1:1998).

2.3 SAMPLING LOCATIONS AND FREQUENCY

The original iteration of the EPN outlined a suite of surface water and groundwater sampling with various parameters being sampled from a monthly to annual frequency. On the 21^{st of} February 2023, the EPA issued a draft update of EPN 9421/2. The primary change included in this update was a reduction of all surface water and groundwater sampling frequencies to annual (i.e. single grab sample event), for all parameters except for those which are monitored continuously via telemetry (ammonia, electrical conductivity, pH, temperature, and flow) as required by Condition M2 of the EPN (Appendix 1).

The four monitoring locations are shown in Figure 1 and include:

- Influent (INF): influent leachate;
- Effluent point 1 (EFF1): treated leachate, released to the Wet Infiltration Forest;
- Effluent point 2 (EFF2): treated leachate, released as surface water to the creek (licensed discharge and compliance monitoring point); and
- Groundwater location (GW01): artesian bore, released to creek

Note that the INF sample was taken from the header tank rather than via the MH1 manhole, as the header tank is more easily accessible and the risk of falling or tripping into MH1 is then avoided.

2.4 ANALYTICAL LABORATORY DETAILS (CONDITION M3-1.2, M4-1.1)

The analytical laboratory used to carry out the water quality testing presented in this report was ALS Environmental Services in Springvale, VIC, Australia. ALS is a NATA certified laboratory.

2.5 QUALITY ASSURANCE (QA) / QUALITY CONTROL (QC)

The duplicate sampling rate objective for the reporting period was 1 in per 20 primary samples. One duplicate sample was taken during the reporting period to satisfy this objective. A summary of the QA/QC samples collected is provided in Section 3.3.5.

2.6 RESPONSIBLE PERSONNEL (CONDITION M4-1.2)

The contact details for the personnel undertaking the monitoring program are shown in Table 2 below.

Table 2. Personnel undertaking monitoring program for the reporting period

Person	Company	Role	Contact Email	Phone
Dr. Ljiljana Pantelic	Syrinx	Report Review/Quality Assurance	lpantelic@syrinx.net.au	08 9227 9355
Tania Imlach	Syrinx	Water Sampling	timlach@syrinx.net.au	0419 521 192
Suzanne Walker	Syrinx	Water Sampling, reporting	swalker@syrinx.net.au	0487 095 409

3.0 ANNUAL MONITORING RESULTS

3.1 FLOWS (CONDITION M4-1.3)

To satisfy condition M4-1.3 of the EPN, the volumes and flows of leachate entering and leaving the system during the reporting period were recorded by the telemetry system and have been summarised in tabulated and graphical form in the sections below. Throughout this document the term "volume" is used to describe the amount of leachate calculated (hereafter, "measured") at the INF, EFF1 and EFF2 locations.

Volumes and flows of leachate through the system are influenced by rainfall. As such, rainfall data for the reporting period is discussed in Section 3.1.1 to provide additional context to the flow monitoring results.

3.1.1 Rainfall

Rainfall data is measured at the BWMC site and is shown in Figure 2. A tabulated summary of monthly rainfall data is provided in Table 3.

In the current reporting period (November 2023 – October 2024) there was 31% less rainfall than in the previous period, a reduction of 268 mm.

Figure 2 displays the daily rainfall over the previous 24 months. Most of the current reporting period's rainfall fell from June – August 2024 (Table 3, Figure 2).

The long-term (2007 – 2023) mean annual rainfall is 1,075 mm (± 237 mm), with the current reporting period (November 2023 – October 2024) falling well below this at 795 mm

Table 3. Rainfall measured at the BWMC Site FOR current and previous reporting period.

	Month	Daily	Rainfal	l (mm)	Number of Days with	Total Rainfall
	WOILLI		Range		Rainfall	(mm)
23	November 2022	0.0	-	34.0	16.0	135.0
2023	December 2022	0.0	-	7.0	5.0	15.0
	January 2023	0.0	-	9.0	7.0	26.0
d o	February 2023	0.0	-	15.0	5.0	42.0
October	March 2023	0.0	-	16.0	16.0	72.0
i	April 2023	0.0	-	20.0	12.0	56.0
2022	May 2023	0.0	-	7.0	15.0	32.0
_	June 2023	0.0	-	30.0	26.0	180.0
þer	July 2023	0.0	-	27.0	17.0	116.0
E E	August 2023	0.0	-	23.0	15.0	95.0
November	September 2023	0.0	-	12.0	12.0	46.0
Ž	October 2023	0.0	-	15.0	12.0	54.0
	November 2022 - O	ctober 2	023 Sui	nmary	158	869

Mayranah an 2022	0.0		27.0	6.0	FC 0
		-			56.0
December 2023	0.0	-	55.0	8.0	89.0
January 2024	0.0	-	30.0	10.0	95.0
February 2024	0.0	-	3.0	4.0	8.0
March 2024	0.0	-	9.4	7.0	16.2
April 2024	0.0	-	43.0	9.0	58.0
May 2024	0.0	-	19.0	11.0	43.0
June 2024	0.0	-	40.0	11.0	89.0
July 2024	0.0	-	138.0	17.0	276.0
August 2024	0.0	-	31.0	24.0	169.0
September 2024	0.0	-	22.0	24.0	120.0
October 2024	0.0	-	59.0	12.0	118.0
November 2023 - Oc	ctober 20)24 Su	mmary	143	1137
Percentage difference				9%	31%
	February 2024 March 2024 April 2024 May 2024 June 2024 July 2024 August 2024 September 2024 October 2024 November 2023 - October 2023	December 2023 0.0 January 2024 0.0 February 2024 0.0 March 2024 0.0 April 2024 0.0 May 2024 0.0 June 2024 0.0 July 2024 0.0 August 2024 0.0 September 2024 0.0 October 2024 0.0 November 2023 - October 20	December 2023 0.0 - January 2024 0.0 - February 2024 0.0 - March 2024 0.0 - April 2024 0.0 - May 2024 0.0 - June 2024 0.0 - July 2024 0.0 - August 2024 0.0 - September 2024 0.0 - October 2024 0.0 - November 2023 - October 2024 Su	December 2023 0.0 - 55.0 January 2024 0.0 - 30.0 February 2024 0.0 - 3.0 March 2024 0.0 - 9.4 April 2024 0.0 - 43.0 May 2024 0.0 - 19.0 June 2024 0.0 - 40.0 July 2024 0.0 - 138.0 August 2024 0.0 - 31.0 September 2024 0.0 - 22.0 October 2024 0.0 - 59.0 November 2023 - October 2024 Summary	December 2023 0.0 - 55.0 8.0 January 2024 0.0 - 30.0 10.0 February 2024 0.0 - 3.0 4.0 March 2024 0.0 - 9.4 7.0 April 2024 0.0 - 43.0 9.0 May 2024 0.0 - 19.0 11.0 June 2024 0.0 - 40.0 11.0 July 2024 0.0 - 138.0 17.0 August 2024 0.0 - 31.0 24.0 September 2024 0.0 - 22.0 24.0 October 2024 0.0 - 59.0 12.0 November 2023 - October 2024 Summary 143

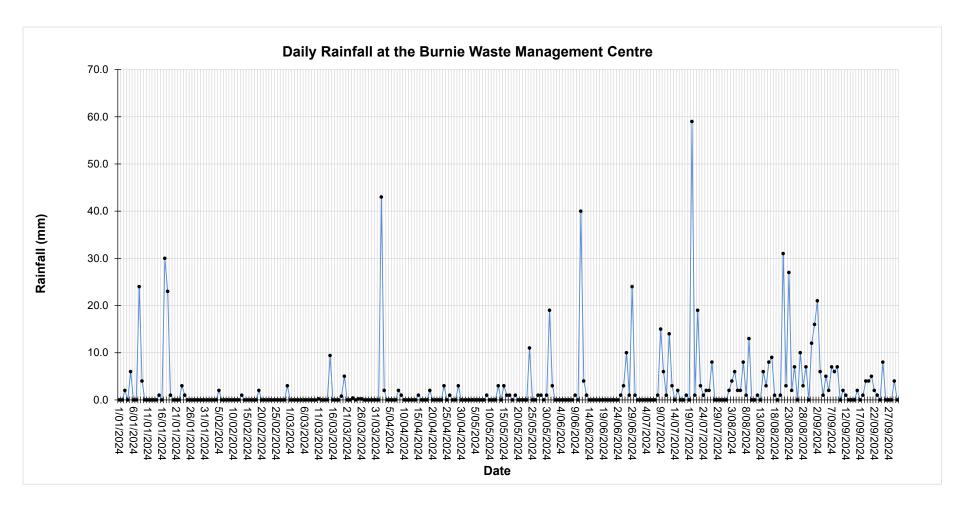


Figure 2. Daily rainfall data recorded at the Burnie Waste Management Centre (Source: Burnie City Council).

3.1.2 System Flows (Condition G8 1.4, 1.6)

Mean and median daily treated leachate volumes and total volumes for the reporting period are summarised in Table 4, and shown for the INF, EFF1 and EFF2 in Figure 3.

<u>Untreated Leachate Inflows – INF</u>

The daily volumes of landfill leachate entering the system at MH01 via INF showed seasonal fluctuations primarily reflecting seasonal changes in rainfall, as has been observed in the past.

Daily leachate volumes observed from November 2023 through to October 2024 ranged from 158 to 497 kL/day (Table 4).

<u>Treated Leachate Volumes - EFF1</u>

The volume of treated leachate discharging to the Wet Infiltration Forest is measured at EFF1 (Figure 1). The Wet Infiltration Forest receives, and infiltrates treated leachate, with overflows discharged to a swale and the unnamed tributary.

The daily volume of leachate treated by the wetland at EFF1 is shown in Figure 3, and fluctuated from 128-797 kL/day. The total volume of treated leachate as measured at EFF1 during the reporting period was 100 ML. The 'wet year' leachate volume prescribed in *Development Proposal & Environmental Management Plan* (DPEMP, 2015) is any year totalling > 45 ML.

Outlet of Wet Infiltration Forest - EFF2

Peaks daily volume of treated leachate discharged (by overland flow) via EFF2 to the unnamed tributary of Cooee Creek mirror those at EFF1. Differences in treated volume between EFF2 and EFF1 are influenced by rainfall additions and infiltration losses The total volume of leachate flow through EFF2 during this reporting period was 51 ML.

Table 4. Volumes of leachate and treated leachate measured in the previous and current reporting periods.

Flows in previous 12 months (November 2021 - October 2022)

Location		Sum volume over reporting period			
Location	Mean ± St. Dev	Median	Range	Unit	(kL)
INF (A)	255 ± 65	240	158 - 497		92,763
EFF1 (B)	289 ± 124	263	128 - 1,167	kL/day	105,287
EFF2 (C)	144 ± 115	115	20 - 1,150		52,536
Net volume added to	12,524				
Net volume added to	11.9%				
Net volume of treate	52,750				
Net volume infiltrat	ed (B-C) as a perc	entage of total flo	ws at (B)		50.1%

Flows in current reporting period (November 2022 - October 2023)

Location			Sum volume over reporting period		
Location	Mean ± St. Dev	Median	Range	Unit	(kL)
INF (A)	260 ± 70	247	158 - 411		96,790
EFF1 (B)	301 ± 127	264	128 - 797	kL/day	100,247
EFF2 (C)	154 ± 112	120	21 - 645		50,999
Net volume added to	3,457				
Net volume added to	3.4%				
Net volume of treate	49,247				
Net volume infiltrat	ed (B-C) as a perc	entage of total flo	ws at (B)		49.1%

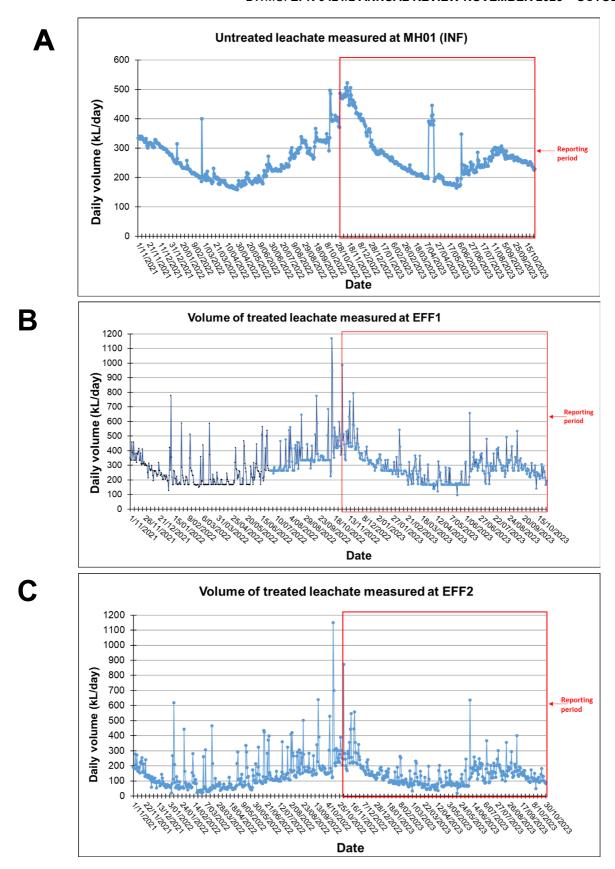


Figure 3. Daily volumes of A) influent (untreated) landfill leachate pumped via INF into the treatment wetland, B) treated leachate which passed through EFF1 prior to infiltration in the Wet Infiltration Fores, and C) treated leachate which passed through the V-notch weir at EFF2 prior to discharging to the unnamed tributary of Cooee Creek

3.2 RECIRCULATION EVENTS (CONDITION M4-1.6)

3.2.1 Background to the requirement for recirculation

Condition EF2-1 of the EPN states that:

"...treated leachate within the polishing pond must be recirculated back into the treatment system if ammonia is detected at concentrations greater than 1.61 mg/L, and discharge is occurring to the unnamed tributary, as measured at EFF 2..."

To meet this condition the continuously monitoring telemetry system housed within the SB04 control shed (Figure 1) recirculates leachate when an ammonia reading of > 1.61 mg/L is measured at the outlet to the polishing wetland (EFF1) in conjunction with measured discharge of flows from the outlet of the infiltration forest (EFF2). During the recirculation event, the leachate is recirculated from EFF1 back into SF05A and SF06A for further treatment (see Figure 1).

3.2.2 Recirculation events during the monitoring period

There were no recirculation events during this reporting period.

3.3 WATER QUALITY (CONDITIONS M2, M4-1.4, 1.5)

3.3.1 Water Quality Data - Continuous Monitoring

Continuous water quality monitoring is undertaken by a set of probes and a telemetry system at the wetland monitoring point (EFF1), which provides continuous data for ammonia, electrical conductivity, pH, and temperature.

The summary statistics for these parameters is shown in Table 5. Key points are as follows:

- Based on the pH and temperature of the system measured throughout the reporting period, a
 great proportion (>90%) of the total ammonia was in the non-toxic ammonium form. Therefore,
 ammonia data represents both the ionised and unionised forms of ammonia.
- Ammonia concentrations were well within compliance at 0.16 mg/L mean and 0.13 mg/L median, Table 5 and Error! Reference source not found.).
- The mean electrical conductivity (EC) measurements across the reporting period was 432µS/cm with minimal fluctuations.
- pH was in circumneutral range .
- Temperature ranged from -2.5 to 28.1 degrees Celsius

Table 5. Summary statistics for continuously monitored parameters at EFF1 for the reporting period.

NH4+ Summary Statistics for reporting period				
Unit:	(NH ₄ ⁺ -N mg/L)			
Min	0.00			
Max	3.84			
Mean	0.16			
Median	0.13			
Standard Deviation	0.28			
Standard Error	0.002			

Electrical Conductivity Summary Statistics for reporting period							
Unit: (μS/cn							
Min	0.0						
Max	546.0						
Mean	431.8						
Median	450.0						
Standard Deviation	83.6						
Standard Error	0.7						

Temperature Summary Statistics for reporting period						
Unit:						
Min	-2.5					
Max	28.1					
Mean	12.8					
Median	12.2					
Standard Deviation	6.1					
Standard Error	0.05					

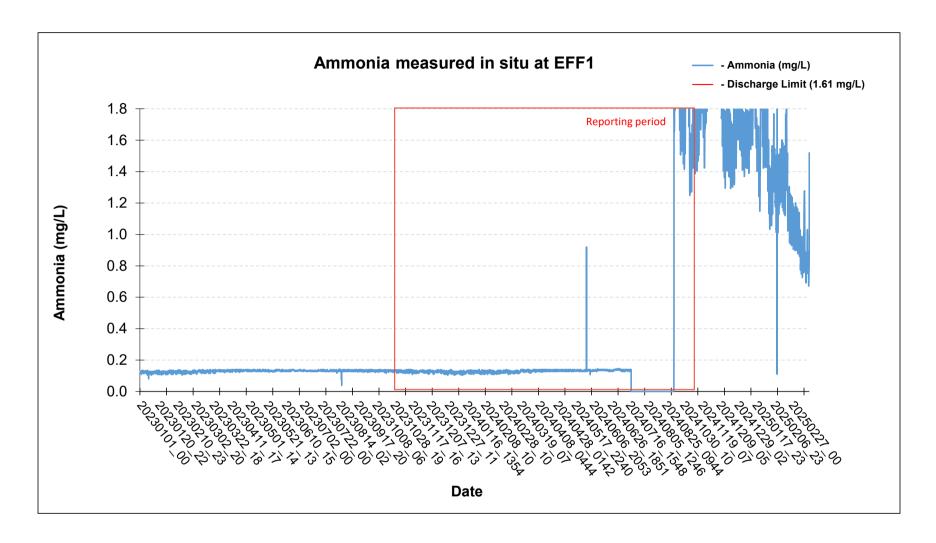


Figure 4. Hourly ammonia concentrations as measured by an in-situ water quality probe at EFF1

3.3.2 Issues and Maintenance Undertaken on the in-situ Probes (Condition M3-1.4)

Scheduled maintenance on the in-situ probes was conducted by Cromarty.

pH in situ probe

pH measurements increased after calibration events which was attributed to the measurement drift of the instrument (sensor drift) rather than an actual increase in pH. The data was cross checked with the handheld field probe readings and laboratory pH measurements (**Error! Reference source not found.**) which showed comparable results following calibration. Sudden spikes / dips in pH measurements were attributed to external disruptions to the probe such as power outages or recalibration events.

3.3.3 Water Quality Data – Laboratory Results (Condition G8 1.6)

Water quality grab sampling was conducted yearly at the INF, EFF1, EFF2 and GW01 sampling locations. A suite of parameters was sampled in accordance with the requirements of the EPN (APPENDIX 1). The documentation for the laboratory analysis undertaken is provided in APPENDIX 2, with tabulated water quality laboratory and field results provided in APPENDIX 3.

The five key water quality parameters with respect to the EPN (described under Conditions E1-1, EF2-3) were ammonia, copper, nickel, zinc, and chromium, with their respective trigger values shown in Table 6.

Table 6 Water quality trigger limits as set in the EPN 9421/2 for EFF2.

Water Quality Parameter	Unit*	EPN Trigger Limit	EPN Condition
Ammonia	mg/L	1.61	EF1 - 1
Chromium (total)	mg/L	0.001	EF2-3
Copper (total)	mg/L	0.0014	EF2-3
Nickel (total)	mg/L	0.011	EF2-3
Zinc (total)	mg/L	0.008	EF2-3

^{*}It has been assumed that the EPN trigger limits for metals were intended to be in µg/L rather than mg/L as was printed in the EPN. The higher, less stringent values printed in the EPN have been converted accordingly by a factor of 1000 and are shown in the above table.

Data for the single sampling event during the reporting period (Oct 2024) for ammonia, chromium, copper, nickel, and zinc are provided in Table 7 against their respective EPN trigger values. A summary graph for ammonia concentrations measured via laboratory analysis is also shown in Figure 5. The system was fully compliant with ammonia concentrations well below 1.61 mg/L at EFF2 during the monitoring period.

No water quality parameters were found to exceed water quality trigger limits of the EPN, hence <u>the</u> <u>system is fully compliant with EPN requirements in terms of water quality.</u>

Table 7. System compliance with the water quality trigger limits listed in EPN 9421/2.

Date range of data: Nov-23 to Oct-24

Water Quality Parameter	EPN Condition	Sampling Location	Mean Concentration **	EPN Trigger Limit	Unit	Compliance with EPN 9421/2
Ammonia	EF1 - 1	EFF2	0.16	1.61		
Ammonia	EF2 - 1	EFF1	1.90	>1.61		•
Chromium (total)		EFF2	0.0005	0.0010	mg/L	✓
Copper (total)	EF2 - 3*		0.0005	0.0014	IIIg/L	✓
Nickel (total)	EFZ - 3	EFFZ	0.0030	0.0110		✓
Zinc (total)			0.0025	0.0080		✓

Legend

- ✓ Water quality parameter is below the respective trigger limit defined in EPN 9421/1
- Water quality parameter exceeds the respective trigger limit defined in EPN 9421/1
- * It has been assumed that the EPN trigger limits for metals were intended to be in μ g/L rather than mg/L as was printed in the EPN. The higher, less stringent values printed in the EPN have been converted accordingly by a factor of 1000 and have been used in the above table.
- ** The arithmetic mean was used to calculate these values. Where a concentration was below the limit of detection, the concentration was taken at 50% of the limit of detection to enable the calculation.

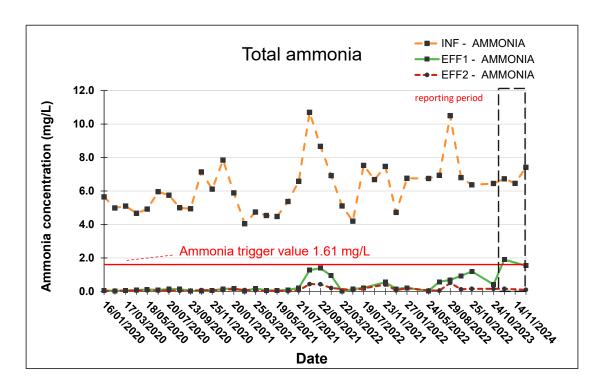


Figure 5. Ammonia concentrations in the influent (INF), discharge from the surface wetlands (EFF1) and effluent discharge to the unnamed tributary to Cooee creek (EFF2).

3.3.4 Groundwater Quality Results

Groundwater quality results from the GW01 sampling location are tabulated in APPENDIX 3. Similar to the previous reporting period, groundwater quality at GW01 was generally good and characterised by low ammonia, high nitrate, low TP, and very limited and low-level detections of metals (aluminium and nickel) which all fell below the ANZECC water quality trigger values. There were no concerning trends in any water quality parameters during the reporting period.

Physico-chemical

Groundwater at GW01 was found to have a circumneutral pH (range = 7.4 - 7.82). TDS (range = 312 - 469.6 mg/L) EC (range = $467 - 573 \mu\text{S/cm}$) and TSS (range = 0.5 - 0.5) measurements were consistent throughout the reporting period. Bicarbonate alkalinity averaged 179 mg/L, which indicates a good acidity buffering capacity. These values are within the historical range since 2017.

Nutrients

Ammonia concentrations were below the Limit of Reporting (LoR) - 0.14 mg/L at GW01. The mean nitrate concentration was 1.95 mg/L, with little variation across the reporting period. These results are comparable to the previous reporting period, highlighting the stability of the groundwater conditions. Ammonia, nitrate, and nitrogen concentrations have remained stable at GW01 since 2017.

The total phosphorus (TP) concentration at GW01 averaged 0.09 mg/L during this reporting period. Since measurements began in 2017, TP concentrations have remained stable.

Metals

Total arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, selenium, tin, and zinc were not detected at GW01. This is consistent with previous reporting periods. Minimal (0.005 mg/L) aluminium was detected, although all other sampling rounds reported < LoR. Nickel concentrations ranged from < LoR – 0.001 mg/L and remained well below the ANCEZZ & ARMCANZ freshwater trigger value for 99% species protection for this analyte (0.008 mg/L). Both aluminium and nickel concentrations have been consistent since at least 2017.

3.3.5 Quality Control

Duplicate Sample(s)

A total of one duplicate sample was taken during the reporting period and analysed for total metals to assess the variability of laboratory results between samples. As summarised in Table 8, 100% of QA/QC sample analysed were determined to be reflective of the primary sample concentrations, i.e. within \pm 30% of the primary result or within \pm 50% if the result was within 5 fold the limit of reporting (data provided in APPENDIX 2). The results of the QA/QC analysis provide confidence in the accuracy and precision of the analytical results captured during this reporting period.

Table 8. Summary of data from QA/QC samples and an assessment against their primary sample

Sample location	ample location Date taken		Was duplicate data within ± 30% of primary result? *
GW01 Dupe	29/10/2024	EM2418858028	Yes - PASS

^{*} Or within ± 50% if result was < 5x the LOR.

Sample Non-Compliance

The laboratory used for analysis (ALS in Victoria) advised of holding time non-compliance for the pH and redox analysis across all sampling events, as these parameters have a short holding time of 6 hours (laboratory reports are provided in APPENDIX 2). The holding time non-compliance for these analytes was as a result the overnight transport of samples from Tasmania to the laboratory in Victoria and as such were unavoidable. Field measurements were taken to supplement this data where possible.

3.4 RESULTS OF LANDFILL SETTLEMENT (CONDITION M4-1.7)

EPN Condition M4-1.7 states that the results of all settlement monitoring shall be included within the annual review.

No settlement monitoring has been conducted since March 2021 due to ongoing management changes and budgetary constraints at BWMC. BCC has confirmed that they are seeking to urgently have surveyors attend site to perform a settlement monitoring survey. Note, settlement data has historically been very stable.

3.5 RESULTS OF PIEZOMETER MONITORING (CONDITION M4-1.7)

The results of all piezometer monitoring (leachate level monitoring) are presented in Figure 6 to fulfil EPN Condition M4-1.7. Generally, levels measured within each of the monitoring bores during the reporting period were consistent with the trends identified during the previous reporting period.

Piezometer measurement and monitoring is the responsibility of Burnie City Council. Note that two piezometers (MW21 and MW22) were removed during construction of the wetland system.

4.0 ENVIRONMENTAL PERFORMANCE

4.1 PUBLIC COMPLAINTS (EPN CONDITION G8 1.2)

No public complaints were received during the reporting period.

4.2 PROCEDURAL OR PROCESS CHANGES (EPN CONDITION G8 1.3)

No procedural or process-related changes were undertaken during the reporting period.

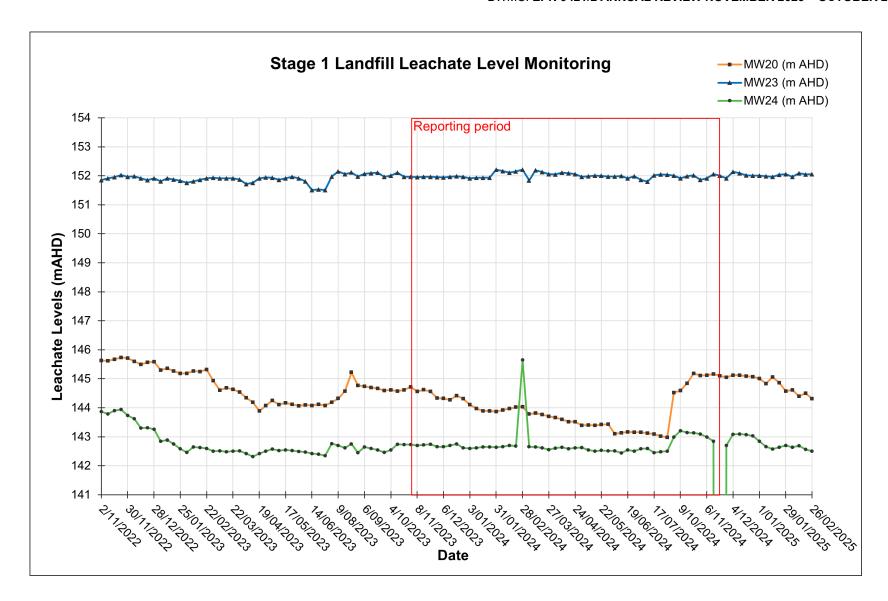


Figure 6. Leachate levels as measured by piezometers at several locations surrounding the landfill cap. Note that piezometers at MW21 and MW22 were removed during construction of the wetland.

4.3 WASTE MINIMISATION INITIATIVE (EPN CONDITION G8 1.4)

One (1) waste minimisation initiative was implemented during the reporting period which involved:

- Harvesting of sludge from within PT01, PT02 and PT02 Legacy (Figure 1); and
- Disposal to landfill

The initiative was carried out under EPA Approval G3 of the EPN 9421/1 and document EA M481808 ck which stipulates the conditions required to treat sludge material to meet the category of Level 1 Fill Material as described in *Information Bulletin No. 105 – Classification and Management of Contaminated Soil for Disposal* (EPA Tas, 2018). The initiative is anticipated to continue in subsequent reporting periods under the standard procedure documented within the Operations and Maintenance Manual (Syrinx, 2019).

This material was non-compliant and disposed of to Dulverton Waste Management center.

4.3.1 Sludge removal, treatment, and reuse

No desludging or treatment occurred throughout the reporting period. Details of incidents or NON-COMPLIANCE with the EPN (EPN Condition G8 1.5).

4.4 SUMMARY OF COMMUNITY CONSULTATION / COMMUNICATION (CONDITION G8 1.10)

No community consultation or communication was required or undertaken during the reporting period.

5.0 SUMMARY OF RESULTS AND COMPLIANCE (CONDITION G8 1.9)

The results of the monitoring data collected during the reporting period are summarised below.

Volume of untreated and treated leachate processed by the system

- The total volume of untreated leachate entering the system via INF was 97 ML, and the treatment system discharged 100 ML via EFF1.
- 51 ML of treated flows were discharged at the downstream boundary of the Wet Infiltration Forest (EFF2), indicating that 50% was infiltrated during the reporting period.

Water quality monitoring data

- The water quality monitoring data for the reported period showed full system compliance with EPN 9421/2 (draft version).
- The quality of groundwater at GW01 during the reporting period was consistent with the previous reporting period and as such did not show a deterioration in water quality.

REFERENCES

Burnie Waste Management Centre (2016). Leachate Treatment Wetland Settlement Monitoring Plan.

Environmental Protection Authority Tasmania (2016). Environmental Protection Notice 9421/1.

Environmental Protection Authority Tasmania (2016). Environmental Protection Notice 9421/2 (draft).

Environmental Protection Authority Tasmania (2018). *Information Bulletin 105 – Classification and Management of Contaminated Soil for Disposal*

Environmental Protection Authority Tasmania (2019). Landfill Leachate Wetland Treatment Sludge Management Approval Under G3 Of Environment Protection Notice No, 9421/1 M481808 ck

National Environment Protection (Assessment of Site Contamination) Measure 1999 as amended 2013.

Natural Environment Services Tasmania (2014). Natural Values Assessment Unnamed Tributary of Cooee Creek

Syrinx Environmental PL (2015). Burnie Waste Management Centre Stage 1 Landfill Leachate Treatment Wetland Development Proposal & Environmental Management Plan (DPEMP)

Syrinx Environmental PL (2019). Burnie Waste Management Centre Stage 1 Landfill Leachate Treatment Wetland Operations and Maintenance Manual

Syrinx Environmental PL (2021a). BWMC "Site" EPN 9161/2 Annual Environmental Review August 2021 – July 2022

Syrinx Environmental PL (2021b). BWMC "Wetland" EPN 9421/1 Annual Environmental Review July 2021 – June 2022

APPENDICES

APPENDIX 1. Table of EPN 9421/2 Monitoring Parameters and Frequencies

Parameter	Units	Location	Frequency	Method
Flow	m³/day	INF, EFF1, EFF2	continuous	Field –online flow meter
Temp	°C		annually	Field
рН		EFFI	continuous	Field
		INF, EFF2	annually	lab
Conductivity	μS/cm	EFFI	continuous	Field
		INF, EFF2	annually	lab
Alkalinity total	mg CaCO³/L	INF, EFF1, EFF2	annually	lab
Total suspended solids	mg/L		annually	
Total dissolved solids				
Dissolved oxygen				Field
Dissolved oxygen content			annually	lab
Chemical oxygen demand			annually	
Oxidation reduction potential	Eh mV		annually	
Cyanide total	µg/L		annually	
РСВ	µg/L		annually	
Ammonia	mg/l	EFFI	continuous	Field
		INF, EFF1, EFF2	annually	lab

Nitrate		INF, EFF1, EFF2	annually	lab
Nitrite				
Total nitrogen				
Total phosphorus				
Phosphorous dissolved reactive				
Chloride			annually	
Sulphate				
Mg, K, Na				
Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Zn	μg/L		annually	
E.coli	Org / 100	INF, EFF1, EFF2	annually	
Enterococci	11113			
Acenaphthene	μg/L	INF, EFF1, EFF2	annually	
Acenaphthylene				
Anthracene				
Benzene				
Benzo(a)anthracene				
Benzo(a)anthracene				
Benzo(a)pyrene				
Benzo(b&k)fluoanthene				
Benzo(ghi)perylene				
Chrysene				
Dibenzo(ah)anthracene				
Fluranthrene				

Acenaphthene	μg/L	INF, EFF1, EFF2	annually	
Acenaphthylene				
Anthracene				
Benzene				
Benzo(a)anthracene				
Benzo(a)anthracene				
Benzo(a)pyrene				
Benzo(b&k)fluoanthene				
Benzo(ghi)perylene				
Chrysene				
Dibenzo(ah)anthracene				
Fluranthrene				
Fluorene				
Indeno(123-cd)pyrene				
Naphthalene				
Phenanthrene				
Pyrene				
Ethylbenzene, Om&p Xylene, Toluene, Total BTEX	μg/L	INF, EFF1, EFF2	annually	lab
	1	ı		
Groundwater monitoring	<u> </u>			
Parameter	Units	Location	Frequency	Method
Water level	m³/day	GWI	annually	Field
Temp	°C		annually	Field
рН			annually	

Cyanide total	µg/L	annually	
РСВ	μg/L	annually	
Ammonia	mg/l	continuous	
		annually	
Nitrate		annually	
Nitrite			
Total nitrogen			
Total phosphorus			
Phosphorous dissolved reactive			
Chloride		annually	
Sulphate			
Mg, K, Na			
Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, Zn	μg/L	annually	

APPENDIX 2. Laboratory Analytical Data

Page : 7 of 28 Work Order : EM2418858

Client : SYRINX ENVIRONMENTAL PL

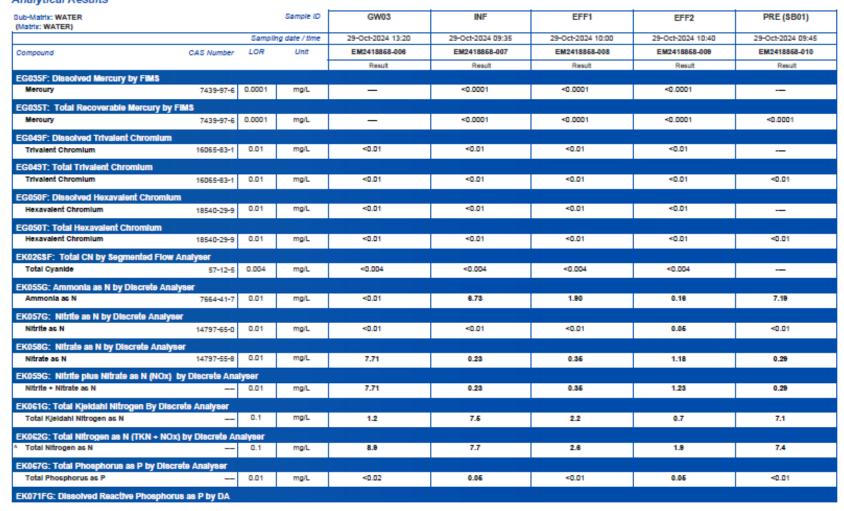
Project : 22054

			Sample ID	GW03	INF	EFF1		DDE (DDC)
Sub-Matrix: WATER (Matrix: WATER)			Sample ID	GW03	INF	EFF1	EFF2	PRE (SB01)
		Sampl	ing date / time	29-Oct-2024 13:20	29-Oct-2024 09:35	29-Oct-2024 10:00	29-Oct-2024 10:40	29-Oct-2024 09:45
Compound	CAS Number	LOR	Unit	EM2418858-006	EM2418858-007	EM2418858-008	EM2418858-009	EM2418858-010
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator	- 1	0.04	-1115-11	6.37	7.05	7.63	7.86	7.14
pH Value		0.01	pH Unit	6.37	7.05	7.63	7.86	7.14
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C	-	1	μS/cm	147	492	444	428	499
EA015: Total Dissolved Solids dried a	t 180 ± 5 °C							
Total Dissolved Solids @180°C		10	mg/L	92	293	251	242	188
EA025: Total Suspended Solids dried	at 104 ± 2°C				^			
Suspended Solids (SS)		1	mg/L	<1	32	2	5	27
EA075: Redox Potential			1					4
Redox Potential		0.1	mV .	251	167	201	238	****
pH Redox		0.01	pH Unit	5.59	6.36	7.15	7.95	
ED037P: Alkalinity by PC Titrator					·			
Hydroxide Alkalinity as CaCO3	DMO-210-001	1.	mg/L	<1	<1	<1	ব	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	ব
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	10	178	164	152	192
Total Alkalinity as CaCO3		1	mg/L	10	178	164	152	192
ED041G: Sulfate (Turbidimetric) as S0	04 2- by DA					1	1	
Sulfate as SO4 - Turbidimetric	14808-79-8	1	mg/L	2	11	4	4	-
ED045G: Chloride by Discrete Analys	er		1					0
Chloride	16887-00-6	1	mg/L	16	46	43	40	****
ED093F: Dissolved Major Cations	- 1 To 1 To 1							
Calcium	7440-70-2	1	mg/L	4	24	26	24	-
Magnesium	7439-95-4	1	mg/L	5	21	21	21	
Sodium	7440-23-5	1	mg/L	15	35	36	36	
Potassium	7440-09-7	1	mg/L	2	7	8	8	
ED093T: Total Major Cations								
Calcium	7440-70-2	1	mg/L	4	23	24	23	25
Magnesium	7439-95-4	1.	mg/L	5	20	21	21	21
Sodium	7440-23-5	1	mg/L	14	35	36	36	34

Page : 8 of 28 Work Order : EM2418858

Client : SYRINX ENVIRONMENTAL PL

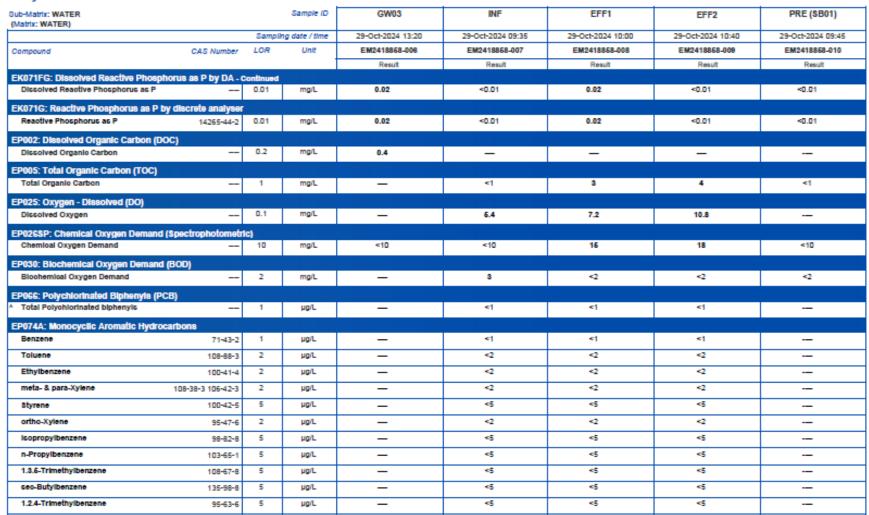
Project · 22054



Page : 9 of 28 Work Order : EM2418858

Client : SYRINX ENVIRONMENTAL PL

Project : 22054



Page : 10 of 28 Work Order : EM2418858

Client : SYRINX ENVIRONMENTAL PL

Project : 22054

Page : 11 of 28 Work Order : EM2418858

Client : SYRINX ENVIRONMENTAL PL

Project : 22054

ALS

Sub-Matrix: WATER (Matrix: WATER)		Sample ID	GW03	INF	EFF1	EFF2	PRE (\$B01)
	Sampl	ing date / time	29-Oct-2024 13:20	29-Oct-2024 09:35	29-Oct-2024 10:00	29-Oct-2024 10:40	29-Oct-2024 09:45
Compound CAS Numbe	LOR	Unit	EM2418868-008	EM2418868-007	EM2418858-008	EM2418868-009	EM2418868-010
			Result	Result	Result	Result	Result
EP074A: Monocyclic Aromatic Hydrocarbons - Continue	d						
tert-Butylbenzene 98-06-	5 5	µg/L	_	<5	<5	<5	
p-isopropyttoluene 99-87-	5 5	µg/L	_	<5	<5	<5	
n-Butylbenzene 104-51-	5	µg/L	_	<5	<\$	<5	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Naphthalene 91-20-	1.0	µg/L	_	<1.0	<1.0	<1.0	-
Acenaphthylene 208-96-	1.0	µg/L	_	<1.0	<1.0	<1.0	-
Acenaphthene 83-32-	1.0	µg/L	_	<1.0	<1.0	<1.0	
Fluorene 86-73-	7 1.0	µg/L	_	<1.0	<1.0	<1.0	
Phenanthrene 85-01-	1.0	µg/L	_	<1.0	<1.0	<1.0	
Anthraoene 120-12-	1.0	µg/L	_	<1.0	<1.0	<1.0	
Fluoranthene 206-44-	1.0	µg/L	_	<1.0	<1.0	<1.0	-
Pyrene 129-00-	1.0	µg/L	_	<1.0	<1.0	<1.0	-
Benz(a)anthracene 56-55-	1.0	µg/L	_	<1.0	<1.0	<1.0	-
Chrysene 218-01-	1.0	µg/L	_	<1.0	<1.0	<1.0	
Benzo(b+j)fluoranthene 205-99-2 205-82-	1.0	µg/L	_	<1.0	<1.0	<1.0	-
Benzo(k)fluoranthene 207-08-	1.0	µg/L	_	<1.0	<1.0	<1.0	-
Benzo(a)pyrene 50-32-	0.5	µg/L	_	<0.5	<0.5	<0.5	-
Indeno(1.2.3.od)pyrene 193-39-	1.0	µg/L	_	<1.0	<1.0	<1.0	-
Dibenz(a.h)anthracene 53-70-	1.0	µg/L	_	<1.0	<1.0	<1.0	-
Benzo(g.h.l)perylene 191-24-	2 1.0	µg/L	_	<1.0	<1.0	<1.0	-
* Sum of polyoyollo aromatic hydrocarbons —	0.5	µg/L	_	<0.5	<0.5	<0.5	-
^ Benzo(a)pyrene TEQ (zero) —	- 0.5	µg/L	_	<0.5	<0.5	<0.5	
EP080: BTEXN							
* Sum of BTEX —	- 1	μg/L	_	<1	<1	<1	-
MM301: E.coll & Faecal Coliforms MPN							
Escherichia coli -		MPN/100mL	_	0	170	810	
Faecal Coliforms -	- 0	MPN/100mL	_	0	220	810	

Page : 22 of 28 Work Order : EM2418858

Client : SYRINX ENVIRONMENTAL PL

Project : 2205

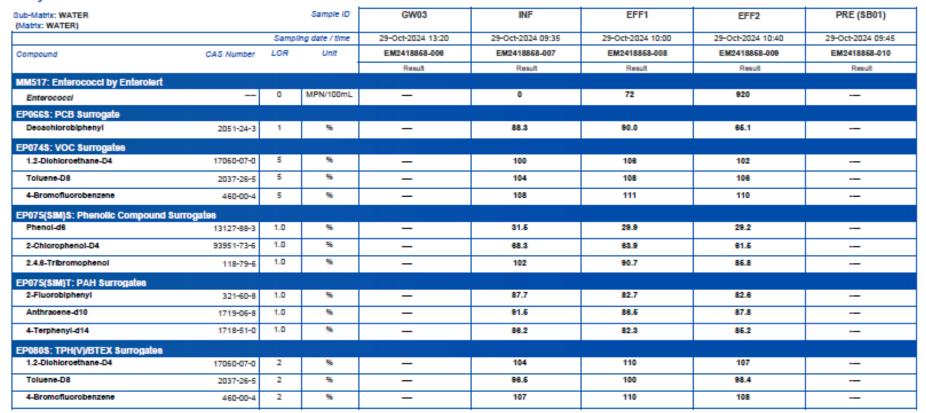
Analytical Results

Sample ID \$\$01 OUT DUPE Sub-Matrix: WATER GW01 \$B03 (Matrix: WATER) Sampling date / time 29-Oct-2024 11:30 29-Oct-2024 10:50 29-Oct-2024 10:50 29-Oct-2024 15:15 LOR Unit EM2418868-028 EM2418868-027 EM2418868-028 EM2418868-029 Compound CAS Number Result Result Result Result EA005P: pH by PC Titrator pH Value 0.01 pH Unit 7.60 7.40 7.78 --**EA010P: Conductivity by PC Titrator** Electrical Conductivity @ 26°C µ8/cm 268 487 457 -EA015: Total Dissolved Solids dried at 180 ± 5 °C Total Dissolved Solids @180°C 10 mg/L 142 312 251 EA025: Total Suspended Solids dried at 104 ± 2°C Suspended Solids (SS) mg/L 8 <1 6 EA075: Redox Potential Redox Potential 0.1 mV 222 238 pH Redox 0.01 pH Unit 6.71 7.29 ED037P: Alkalinity by PC Titrator Hydroxide Alkalinity as CaCO3 mg/L DMO-210-001 <1 <1 <1 1 Carbonate Alkalinity as CaCO3 3812-32-6 mg/L <1 <1 <1 _ Bloarbonate Alkalinity as CaCO3 mg/L 86 179 169 71-52-3 Total Alkalinity as CaCO3 86 1 mg/L 178 169 ED041G: Sulfate (Turbidimetric) as SO4 2- by DA Sulfate as SO4 - Turbidimetrio 14808-79-8 mg/L 2 8 ED045G: Chloride by Discrete Analyser Chloride 16887-00-6 mg/L 38 41 ED093F: Dissolved Major Cations mg/L Calolum 7440-70-2 44 28 Magneclum mg/L 28 21 7439-95-4 1 __ Sodium 24 35 7440-23-5 1 mg/L mg/L Potassium 1 4 8 7440-09-7 ED093T: Total Major Cations Calolum 7440-70-2 mg/L 12 39 24 20 10 25 Magnesium 7439-95-4 mg/L 34 Sodium 7440-23-5 1 mg/L 22 24

Page : 23 of 28 Work Order : EM2418858

Client : SYRINX ENVIRONMENTAL PL

Project : 22054


ALS

Sub-Matrix: WATER			Sample ID	\$\$01 OUT	GW01	DUPE	\$B03	
(Matrix: WATER)				0001001	01101	5012	3003	
		Sampli	ng date / time	29-Oct-2024 11:30	29-Oct-2024 10:50	29-Oct-2024 10:50	29-Oct-2024 15:15	
Compound	CAS Number	LOR	Unit	EM2418868-028	EM2418868-027	EM2418868-028	EM2418868-029	
				Result	Result	Result	Result	-
ED093T: Total Major Cations - Continued								
Potassium	7440-09-7	1	mg/L	2	3	_	7	-
EG020F: Dissolved Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	_	<0.01	_	0.02	-
Arcenio	7440-38-2	0.001	mg/L	_	<0.001	_	<0.001	-
Cadmium	7440-43-9	0.0001	mg/L	_	<0.0001	_	<0.0001	-
Chromium	7440-47-3	0.001	mg/L	_	<0.001	_	<0.001	-
Copper	7440-50-8	0.001	mg/L	_	<0.001	_	0.006	-
Lead	7439-92-1	0.001	mg/L	_	<0.001	_	<0.001	-
Manganese	7439-96-5	0.001	mg/L	_	<0.001	_	0.796	-
Nickel	7440-02-0	0.001	mg/L	_	<0.001	-	0.002	-
Selenium	7782-49-2	0.01	mg/L	_	<0.01	_	<0.01	-
Zino	7440-66-6	0.005	mg/L	_	<0.005	_	<0.005	-
Iron	7439-89-6	0.05	mg/L	_	<0.05	_	<0.05	-
EG020T: Total Metals by ICP-MS								
Aluminium	7429-90-5	0.01	mg/L	0.30	<0.01	<0.01	0.02	-
Arcenio	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	-
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	-
Chromium	7440-47-3	0.001	mg/L	0.001	<0.001	<0.001	<0.001	-
Copper	7440-50-8	0.001	mg/L	0.001	<0.001	<0.001	<0.001	-
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	-
Manganece	7439-96-5	0.001	mg/L	0.219	<0.001	<0.001	0.884	-
Niokel	7440-02-0	0.001	mg/L	0.002	0.001	0.001	0.002	
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	
Zino	7440-66-6	0.005	mg/L	<0.005	<0.005	<0.005	<0.005	-
Iron	7439-89-6	0.05	mg/L	1.64	<0.05	<0.05	1.24	
EG035F: Dissolved Mercury by FIMS								
Meroury	7439-97-6	0.0001	mg/L	_	<0.0001	_	<0.0001	

Page : 12 of 28 Work Order : EM2418858

Client : SYRINX ENVIRONMENTAL PL

Project : 22054

Page : 24 of 28 Work Order : EM2418858

Client : SYRINX ENVIRONMENTAL PL

Project : 22054

ALS

Result R	Sub-Matrix: WATER (Matrix: WATER)			Sample ID	SS01 OUT	GW01	DUPE	\$B03	
Result R			Sampli	ng date / time	29-Oct-2024 11:30	29-Oct-2024 10:50	29-Oct-2024 10:50	29-Oct-2024 15:15	
Company Comp	Compound	CAS Number	LOR	Unit	EM2418868-028	EM2418868-027	EM2418868-028	EM2418868-029	_
Reform Table Tab					Result	Result	Result	Result	-
Cold	EG035T: Total Recoverable Mercury by	y FIMS							
Trivalent Chromium	Meroury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	-
Code St. T. Total Trivalent Chromitum	EG049F: Dissolved Trivalent Chromium	n							
Trivalent Chromium	Trivalent Chromium	16065-83-1	0.01	mg/L	_	<0.01	_	<0.01	
Trivalent Chromium	FG049T: Total Trivalent Chromium	17 17 17							
Hexavalent Chromium		16065-83-1	0.01	mg/L	<0.01	<0.01	_	<0.01	
Hexavalent Chromium	EC050F: Dissolved Havevalent Chromi	turn							
Control Cont			0.01	mg/L	_	<0.01	_	<0.01	-
Hexavalent Chromitum	ECOSOT: Total Havenusteed Characters								
Color Colo		40540.20.0	0.01	ma/L	<0.01	<0.01		<0.01	
Total Cyanide 57-12-5 0.004 mg/L — <0.004 —			5.51	g.c			_		
EKOSSG: Ammonia as N by Discrete Analyser Ammonia as N									
Ammonia as N 7664-41-7 0.01 mg/L 0.07 0.14 — 2.98 —— EK057G: Nitrite as N by Discrete Analyser Nitrite as N 14797-65-0 0.01 mg/L <0.01 <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01 — <0.01	Total Cyanide	57-12-5	0.004	mg/L	_	<0.004	_	<0.004	
EK057G: Nitrite as N by Discrete Analyser Nitrite as N		nalyser							
Nitrite as N	Ammonia as N	7664-41-7	0.01	mg/L	0.07	0.14	_	2.98	
Nitrate as N by Discrete Analyser	EK057G: Nitrite as N by Discrete Analy	/ser							
Nitrate as N	Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	_	<0.01	
Nitrate as N	EK058G: Nitrate as N by Discrete Analy	vser							
Nitrite + Nitrate as N			0.01	mg/L	1.20	1.95	_	0.40	
Nitrite + Nitrate as N	EV059C: Nitrite plue Nitrate se N (NOV	hy Discrete Ans	lypor						
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser Total Kjeldahl Nitrogen as N		J by Discisio Alia		mg/L	1.20	1.95	_	0.40	
Total Kjeldahi Nitrogen as N		and the same							
EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser Total Nitrogen as N — 0.1 mg/L 1.8 2.2 — 4.2 — EK067G: Total Phosphorus as P by Discrete Analyser Total Phosphorus as P — 0.01 mg/L 0.02 0.09 — <0.01 — EK071FG: Dissolved Reactive Phosphorus as P by DA Dissolved Reactive Phosphorus as P — 0.01 mg/L <0.01 0.12 — <0.01 —		screte Analyser	0.4	med	0.4			2.0	
Total Nitrogen as N	•			mg/L	0.4	0.2	_	0.0	-
EK067G: Total Phosphorus as P by Discrete Analyser Total Phosphorus as P — 0.01 mg/L 0.02 0.09 — <0.01 — EK071FG: Dissolved Reactive Phosphorus as P by DA Dissolved Reactive Phosphorus as P — 0.01 mg/L <0.01 0.12 — <0.01 —		Ox) by Discrete Ar							
Total Phosphorus as P 0.01 mg/L 0.02 0.09 <0.01 EK071FG: Dissolved Reactive Phosphorus as P by DA Dissolved Reactive Phosphorus as P 0.01 mg/L <0.01 0.12 <0.01	^ Total Nitrogen as N		0.1	mg/L	1.8	2.2	_	4.2	
EK071FG: Dissolved Reactive Phosphorus as P by DA Dissolved Reactive Phosphorus as P 0.01 mg/L <0.01 0.12 <0.01		crete Analyser							
Dissolved Reactive Phosphorus as P 0.01 mg/L <0.01 0.12 <0.01	Total Phosphorus as P		0.01	mg/L	0.02	0.09	_	<0.01	-
Dissolved Reactive Phosphorus as P 0.01 mg/L <0.01 0.12 <0.01	EK071FG: Dissolved Reactive Phospho	orus as P by DA							
			0.01	mg/L	<0.01	0.12	_	<0.01	
AND THE PROPERTY UNMODIFIED OF U.M. DISPLACE SIDELINGS	EK071G: Reactive Phosphorus as P by	discrete analyses							

Page : 25 of 28 Work Order : EM2418858

Client : SYRINX ENVIRONMENTAL PL

Project : 22054

Analytical Results Sample ID SS01 OUT GW01 DUPE Sub-Matrix: WATER SB03 (Matrix: WATER) 29-Oct-2024 11:30 29-Oct-2024 10:50 29-Oct-2024 10:50 29-Oct-2024 15:15 Sampling date / time Compound CAS Number EM2418868-026 EM2418868-027 EM2418858-028 EM2418858-029 Result Result Result Result EK071G: Reactive Phosphorus as P by discrete analyser - Continued Reactive Phosphorus as P 0.01 <0.01 0.12 14265-44-2 mg/L <0.01 EP005: Total Organic Carbon (TOC) Total Organio Carbon mg/L 2 EP025: Oxygen - Dissolved (DO) Dissolved Oxygen 0.1 mg/L 4.5 8.5 EP026SP: Chemical Oxygen Demand (Spectrophotometric) Chemical Oxygen Demand <10 <10 15 10 mg/L EP030: Blochemical Oxygen Demand (BOD) 2 mg/L <2 Bloohemical Oxygen Demand EP066: Polychlorinated Biphenyls (PCB) Total Polychlorinated biphenyls μg/L <1 _ --EP074A: Monocyclic Aromatic Hydrocarbons Benzene 71-43-2 μg/L <1 <2 Toluene 108-88-3 2 μg/L Ethylbenzene 100-41-4 μg/L < 2 meta- & para-Xylene 108-38-3 106-42-3 μg/L <2 _ _ _ _ Styrene μg/L <5 5 100-42-5 <2 2 μg/L ortho-Xylene 95-47-6 Isopropyibenzene 5 μg/L <5 n-Propylbenzene 103-65-1 5 μg/L <5 1.3.6-Trimethylbenzene μg/L <5 108-67-8 sec-Butylbenzene μg/L <5 135-98-8 1.2.4-Trimethylbenzene 5 <5 95-63-6 μg/L tert-Butylbenzene 5 μg/L <5 98-06-6 5 μg/L <5 99-87-6 p-isopropyitoluene n-Butylbenzene 104-51-8 5 μg/L <5 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons

APPENDIX 3. Tabulated Field And Lab Data

			PHYSICAL PARAM	ETERS																		
Sample ID Sample Date Lab ID	e Date Lab ID	ple Date Lab ID	le Date Lab ID	Date Lab ID	Date Lab ID	ate Lab ID	ELECTRICAL CONDUCTIVITY	DO (mg/L)	DO (%)	TEMPERATURE	Eh (199 mV offset)	REDOX POTENTIAL (No offset)	REDOX (Lab)	рН	pH Redox	SALINITY	TOTAL DISSOLVED SOLIDS	TOTAL SUSPENDED SOLIDS	CHEMICAL OXYGEN DEMAND	TURBIDITY	DISSOLVED ORGANIC CARBON	TOTAL ORGANIC CARBON
			μS/cm	mg/L	%	°C	mV	mV		pH units	s pH units	PPT	mg/L	mg/L	mg/L	NTU	mg/L	mg/L				
EFF1	29-October-2024	EM2418858008	444.00	7.20	74.40	13.50		201.00		7.63	7.15	0.19	251.00	2.00	15.00			3.00				
EFF2	29-October-2024	EM2418858009	428.00	10.80	116.70	12.60		238.00		7.86	7.95	0.18	242.00	5.00	18.00			4.00				
GW01	29-October-2024	EM2418858027	467.00	4.50	26.20	15.20		222.00		7.40	6.71	0.20	312.00	<1	<10							
DUPE	29-October-2024	EM2418858028													-							
INF	29-October-2024	EM2418858007	492.00	5.40	55.10	14.70		167.00		7.05	6.36	0.24	293.00	32.00	<10			<1				
PRE (SB01)	29-October-2024	EM2418858010	499.00		70.00	14.70				7.14		0.23	188.00	27.00	<10			<1				
SB03	29-October-2024		457.00	8.50				238.00		7.78	7.29		251.00	5.00	15.00		-					
SF (SB03)	29-October-2024	EM2418858021	460.00		93.00	18.40	-			7.88		0.19	266.00	1.00	16.00		-	3.00				
SSF (SB05)	29-October-2024	EM2418858022	446.00		51.30	18.70				7.84		0.19	232.00	4.00	14.00			2.00				
ALKALINI		ALINITY	ALKALINIT	γ A	LKALINI	TY HARDI	NESS as	CHI ORIDE			LFATE	C	VANIDE TOT	AL TOTA	M ANIONS T	TOTAL CAT	IONS IONI	C BAL ANC				
	ITY ALK	ALINITY RBONATE)	ALKALINIT (CARBONAT		LKALINI IYDROXII		NESS as ICO3	CHLORIDE			LFATE S SO4 -	C	YANIDE TOT	AL TOT <i>A</i>	AL ANIONS 1	TOTAL CAT	IONS IONI	C BALANCI				
ALKALINI	ITY ALK L) (BICA					DE) Ca		CHLORIDE mg/L		(AS		C	YANIDE TOT		AL ANIONS T	TOTAL CAT	IONS IONI	C BALANCI				
ALKALINI (TOTAL	ITY ALK L) (BICA	RBONATE)	(CARBONAT		IYDROXII	DE) Ca	iCO3			(AS	S SO4 -	C					IONS IONI					
ALKALINI (TOTAL	ITY ALK L) (BICA	mg/L	(CARBONAT		mg/L	DE) Ca	ng/L	mg/L		(AS	SO4 -	C	mg/L		meq/L	meq/L	IONS IONI					
ALKALINI (TOTAL mg/L 164.00	ITY ALK L) (BICA	mg/L	mg/L <1		mg/L	DE) Ca	ng/L	mg/L 43.00		(AS	mg/L 4.00	C	mg/L <0.004		meq/L	meq/L	IONS IONI	% 				
Mg/L 164.00	ITY ALK L) (BICA	mg/L 164.00 152.00	mg/L <1 <1		mg/L <1	DE) Ca	ng/L	mg/L 43.00 40.00		(AS	mg/L 4.00 4.00	C	mg/L <0.004 <0.004		meq/L 	meq/L 	IONS IONI	% 				
mg/L 164.00 152.00 179.00	ITY ALK L) (BICA	mg/L 64.00 152.00	mg/L <1 <1 <1 <1		mg/L <1 <1 <1	DE) Ca	ng/L	mg/L 43.00 40.00 39.00		(AS	mg/L 4.00 4.00 2.00	C	mg/L <0.004 <0.004 <0.004		meq/L 	meq/L 	IONS IONI	% 				
mg/L 164.00 152.00	ITY ALK L) (BICA	mg/L 64.00 52.00 179.00	mg/L <1 <1 <1 <1 <-1 <-1 <-1 <-1 <-1 <-1 <-1		mg/L <1 <1 <1 	DE) Ca	ng/L	mg/L 43.00 40.00 39.00		(AS	mg/L 4.00 4.00 2.00	C	mg/L <0.004 <0.004 <0.004		meq/L	meq/L 	IONS IONI	% 				
mg/L 164.00 152.00 179.00	ITY ALK L) (BICA	mg/L 64.00 52.00 179.00	mg/L <1 <1 <1 <1 <1 <1 <1 <1 <1		mg/L <1 <1 <1 <1 <1 <1 <1 <1 <1	DE) Ca	ng/L	mg/L 43.00 40.00 39.00 46.00		(AS	mg/L 4.00 4.00 2.00	C	mg/L <0.004 <0.004 <0.004 <0.004		meq/L	meq/L	IONS IONI	% 				
mg/L 164.00 152.00 179.00 178.00	D 11	mg/L 64.00 52.00 179.00 178.00 192.00	mg/L <1 <1 <1 <1 <1 <1 < <1 < <1 <1		mg/L <1 <1 <1 <1 <1 <1 <1	DE) Ca	ng/L	mg/L 43.00 40.00 39.00 46.00		(AS	mg/L 4.00 4.00 2.00 	C	mg/L <0.004 <0.004 <0.004 <0.004		meq/L	meq/L	IONS IONI	% 				

DISSOLVED MAJO	R CATIONS			TOTAL MAJOR C	ATIONS			NUTRIENTS				
CALCIUM	MAGNESIUM	SODIUM	POTASSIUM	CALCIUM	MAGNESIUM	SODIUM	POTASSIUM	AMMONIA (AS N)	NITRATE (AS N)	NITRITE (AS N)	NITRITE + NITRATE	TOTAL KJELDAHL NITROGEN AS N
mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
26.00	21.00	36.00	8.00	24.00	21.00	36.00	7.00	1.90	0.35	<0.01	0.35	2.20
24.00	21.00	36.00	8.00	23.00	21.00	36.00	7.00	0.16	1.18	0.05	1.23	0.70
44.00	26.00	24.00	4.00	39.00	25.00	24.00	3.00	0.14	1.95	< 0.01	1.95	0.20
24.00	21.00	35.00	7.00	23.00	20.00	35.00	7.00	6.73	0.23	< 0.01	0.23	7.50
				25.00	21.00	34.00	7.00	7.19	0.29	< 0.01	0.29	7.10
26.00	21.00	35.00	8.00	24.00	20.00	34.00	7.00	2.96	0.40	< 0.01	0.40	3.80
				24.00	20.00	33.00	7.00	3.55	0.40	< 0.01	0.40	3.70
				24.00	20.00	35.00	7.00	2.05	0.35	<0.01	0.35	2.40
		·			METALS							1
ORGANIC NITROGEN (calc)	NITROGEN (TOTAL)	PHOSPHORUS (TOTAL)	PHOSPHORUS DISSOLVED REACTIVE (AS P)	TOTAL ALUMINIUM	TOTAL ARSENIC	TOTAL CADMIUM	TOTAL CHROMIUM	TOTAL COPPER	TOTAL COPPER ORC-ICP-MS	TOTAL IRON	TOTAL LEAD	TOTAL MANGANESE
mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	2.60	<0.01	0.02	<0.01	< 0.001	< 0.0001	< 0.001	<0.001		0.82	< 0.001	1.22
	1.90	0.05	< 0.01	0.03	<0.001	<0.0001	< 0.001	<0.001		0.51	< 0.001	0.14
	2.20	0.09	0.12	<0.01	<0.001	<0.0001	< 0.001	<0.001		<0.05	< 0.001	< 0.001
				<0.01	<0.001	<0.0001	< 0.001	<0.001		<0.05	< 0.001	<0.001
	7.70	0.05	< 0.01	<0.01	<0.001	<0.0001	< 0.001	<0.001		14.70	< 0.001	3.98
	7.40	<0.01	< 0.01	<0.01	<0.001	<0.0001	<0.001	<0.001		9.28	<0.001	3.51
	4.20	<0.01	<0.01	0.02	<0.001	<0.0001	<0.001	<0.001		1.24	<0.001	0.86
	4.10	<0.01	<0.01	0.01	<0.001	<0.0001	<0.001	<0.001		1.34	<0.001	0.87
	2.80	<0.01	<0.01	0.02	<0.001	<0.0001	<0.001	<0.001		1.06	<0.001	1.29
					DISSOLV	ED METALS						
TOTAL MERCURY	TOTAL NICKEL	TOTAL SELENIUM	TOTAL TIN	TOTAL ZINC	DISSOLVED ALUMINIUM	DISSOLVED ARSENIC	DISSOLVED CADMIUM	DISSOLVED TRIVALENT CHROMIUM	DISSOLVED HEXAVALENT CHROMIUM	DISSOLVED CHROMIUM	DISSOLVED COPPER	DISSOLVED COPPER ORC-ICP-MS
mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
<0.0001	0.01	<0.01		<0.005	<0.01	<0.001	< 0.0001	<0.01	<0.01	< 0.001	< 0.001	
< 0.0001	0.00	< 0.01		< 0.005	0.01	< 0.001	< 0.0001	< 0.01	< 0.01	< 0.001	< 0.001	
< 0.0001	0.00	<0.01		< 0.005	<0.01	< 0.001	< 0.0001	< 0.01	<0.01	<0.001	< 0.001	
< 0.0001	0.00	<0.01		<0.005								
	0.01	< 0.01		< 0.005	< 0.01	< 0.001	< 0.0001	< 0.01	< 0.01	<0.001	0.00	
< 0.0001					1							
<0.0001 <0.0001	0.01	< 0.01		< 0.005								
	0.01 0.00	<0.01 <0.01		<0.005 <0.005	0.02	<0.001	<0.0001	<0.01	<0.01	<0.001	0.01	
<0.0001												

														MICRO	BIOLOGY	′			
DISSOLVED	OIRON DISSO	OLVED LEAD	DISSOLV MANGAN		DISSOLVE MERCUR		SSOLVEI NICKEL	0	DISSOLVE SELENIUI	DIS	SOLVED T	IN DISS	SOLVED ZII	NC: I	OTAL IFORMS	ENT	EROCOCO	CI E	. COLI
mg/L		mg/L	mg/L		mg/L		mg/L		mg/L		mg/L		mg/L	CFU	I / 100mL	orc	s /100mL	CFL	J / 100mL
0.05		<0.001	1.20		<0.0001		0.01		< 0.01				<0.005	2	20.00		72.00	1	170.00
< 0.05	i	<0.001	0.13		<0.0001		0.00		<0.01				<0.005		10.00		920.00		610.00
< 0.05		<0.001	<0.00		<0.0001		<0.001		<0.01				<0.005						
17.10		<0.001	4.30		<0.0001		0.01		< 0.01				0.01		0.00		0.00		0.00
		<0.001	0.80		<0.0001		0.00		< 0.01				<0.005	1 1	60.00		27.00	1	120.00
Polychlori	inated Biphenyls (as Aroclors)				-			Polynucle	ar Aromatic H	lydrocarbons	-		•		-			
Total Polychlorinate d biphenyls	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Naphtha ene	I Acenaphthyl ene	Acenaphthen e	Fluorene	Phenanthr ene	Anthracene	Fluoranthen e	Pyrene	Benz(a)a nthracen e	Chrysene	Benzo(b+j)f Iuoranthen e	
μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
<1 <1								<1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
<1								<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1								<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
<1								<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

						BTEXN							
Benzo(a)pyr ene	Indeno(1.2.3. cd)pyrene	Dibenz(a.h)anthrac ene	Benzo(g.h.i)peryle ne	Sum of polycyclic aromatic hydrocarbons	Benzo(a)pyrene TEQ (zero)	Benzene	Toluene		meta- & para-Xylene	Styrene	ortho-Xylene	n-Propylbenzene	1.3.5- Trimethylbenzene
μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		
<0.5	<1.0	<1.0	<1.0	<0.5	<0.5	<1	<2	<2	<2	<5	<2	<5	<5
<0.5	<1.0	<1.0	<1.0	<0.5	<0.5	<1	<2	<2	<2	<5	<2	<5	<5
<0.5	<1.0	<1.0	<1.0	<0.5	<0.5	<1	<2	<2	<2	<5	<2	<5	<5
<0.5	<1.0	<1.0	<1.0	<0.5	<0.5	<1	<2	<2	<2	<5	<2	<5	<5
													_

sec-Butylbenzene	1.2.4- Trimethylbenzene	tert-Butylbenzene	p-Isopropyltoluene	n-Butylbenzene	Total Xylenes	Sum of BTEX	Naphthalene
					μg/L	μg/L	μg/L
<5	<5	<5	<5	<5	<5		<1
<5	<5	<5	<5	<5	<5		<1
<5	<5	<5	<5	<5	<5		<1
<5	<5	<5	<5	<5	<5		<1

